<$BlogRSDUrl$>

Tuesday, October 12, 2004

Information as Armor 

David Talbot of MIT Technology Review describes the battle for "Objective Peach," a Euphrates River bridge 30 klicks SW of Baghdad. The story encapsulates the potential benefits and present-day drawbacks of the Pentagon's new paradigm -- a drone-dependent, remote-controlled, smaller, smarter military in which ground units will be replaced by networked "A-teams" and field commanders superseded by "alpha geeks":
In theory, the size of the Iraqi attack should have been clear well in advance. U.S. troops were supported by unprecedented technology deployment. During the war, hundreds of aircraft- and satellite-mounted motion sensors, heat detectors, and image and communications eavesdroppers hovered above Iraq. The four armed services coordinated their actions as never before. U.S. commanders in Qatar and Kuwait enjoyed 42 times the bandwidth available to their counterparts in the first Gulf War. High-bandwidth links were set up for intelligence units in the field. A new vehicle-tracking system marked the location of key U.S. fighting units and even allowed text e-mails to reach front-line tanks. This digital firepower convinced many in the Pentagon that the war could be fought with a far smaller force than the one it expected to encounter.

Yet at Objective Peach, Lt. Col. Ernest “Rock” Marcone, a battalion commander with the 69th Armor of the Third Infantry Division, was almost devoid of information about Iraqi strength or position. “I would argue that I was the intelligence-gathering device for my higher headquarters,” Marcone says. His unit was at the very tip of the U.S. Army’s final lunge north toward Baghdad; the marines advanced on a parallel front. Objective Peach offered a direct approach to the Saddam International Airport (since rechristened Baghdad International Airport). “Next to the fall of Baghdad,” says Marcone, “that bridge was the most important piece of terrain in the theater, and no one can tell me what’s defending it. Not how many troops, what units, what tanks, anything. There is zero information getting to me. Someone may have known above me, but the information didn’t get to me on the ground.” Marcone’s men were ambushed repeatedly on the approach to the bridge. But the scale of the intelligence deficit was clear after Marcone took the bridge on April 2.

As night fell, the situation grew threatening. Marcone arrayed his battalion in a defensive position on the far side of the bridge and awaited the arrival of bogged-down reinforcements. One communications intercept did reach him: a single Iraqi brigade was moving south from the airport. But Marcone says no sensors, no network, conveyed the far more dangerous reality, which confronted him at 3:00 a.m. April 3. He faced not one brigade but three: between 25 and 30 tanks, plus 70 to 80 armored personnel carriers, artillery, and between 5,000 and 10,000 Iraqi soldiers coming from three directions. This mass of firepower and soldiers attacked a U.S. force of 1,000 soldiers supported by just 30 tanks and 14 Bradley fighting vehicles. The Iraqi deployment was just the kind of conventional, massed force that’s easiest to detect. Yet “We got nothing until they slammed into us,” Marcone recalls.

Objective Peach was not atypical of dozens of smaller encounters in the war. Portions of a forthcoming, largely classified report on the entire Iraq campaign, under preparation by the Santa Monica, CA, think tank Rand and shared in summary with Technology Review, confirm that in this war, one key node fell off the U.S. intelligence network: the front-line troops. “What we uncovered in general in Iraq is, there appeared to be something I refer to as a ‘digital divide,’” says Walter Perry, a senior researcher at Rand’s Arlington, VA, office and a former army signals officer in Vietnam. “At the division level or above, the view of the battle space was adequate to their needs. They were getting good feeds from the sensors,” Perry says. But among front-line army commanders like Marcone—as well as his counterparts in the U.S. Marines—“Everybody said the same thing. It was a universal comment: ‘We had terrible situational awareness,’” he adds . . . .

The technologies driving force transformation are incredibly complicated. It will take at least 31 million lines of computer code to run something called Future Combat Systems, the centerpiece of the Pentagon’s transformation effort. An army-run program expected to cost more than $100 billion, it consists of a suite of new manned and unmanned machines, all loaded with the latest sensors, roaming the air and ground. Software will process sensor data, identify friend and foe, set targets, issue alerts, coordinate actions, and guide decisions. New kinds of wireless communications devices—controlled by yet more software and relaying communications via satellites—will allow seamless links between units. Currently, 23 partner companies, many with their own platoons of subcontractors, are building the systems; Boeing of Chicago and Science Applications International of San Diego are charged with tying them all together and crafting a “system of systems” by 2014.

In this grand vision, information isn’t merely power. It’s armor, too. Tanks weighing 64 metric tons could be largely phased out, giving way to lightly armored vehicles—at first, the new 17-metric-ton Stryker troop carrier—that can avoid heavy enemy fire if need be. These lighter vehicles could ride to war inside cargo planes; today, transporting large numbers of the heaviest tanks requires weeks of transport via land and sea. “The basic notion behind military transformation is that information technologies allow you to substitute information for mass. If you buy into that, the whole force structure changes,” says Stuart Johnson, a research professor at the Center for Technology and National Security Policy at National Defense University in Washington, DC. “But the vision of all this is totally dependent on information technologies and the network. If that part of the equation breaks down, what you have are small, less capable battle platforms that are more vulnerable” . . . .

Once the invasion began, breakdowns quickly became the norm. For the movement of lots of data—such as satellite or spy-plane images—between high-level commanders and units in the field, the military employed a microwave-based communications system originally envisioned for war in Europe. This system relied on antenna relays carried by certain units in the advancing convoy. Critically, these relays—sometimes called “Ma Bell for the army”—needed to be stationary to function. Units had to be within a line of sight to pass information to one another. But in practice, the convoys were moving too fast, and too far, for the system to work. Perversely, in three cases, U.S. vehicles were actually attacked while they stopped to receive intelligence data on enemy positions. “A lot of the guys said, ‘Enough of this shit,’ and turned it off,” says Perry, flicking his wrist as if clicking off a radio. “‘We can’t afford to wait for this.’”

Fortunately for U.S. forces, they faced little resistance during the Iraq War. The Iraqis launched no air attacks or Scud missiles. Iraqi soldiers shed uniforms and boots and walked away barefoot, studiously avoiding eye contact with the Americans. When they did fight, they used inferior weapons and vehicles. To be sure, U.S. units racing forward would run into stiff “meeting engagements”—jargon for a surprise collision with enemy forces. But such meetings would end quickly. “They [the U.S. forces] would succeed in these meeting engagements,” Cote says. “But we were far from the vision of total knowledge. You can easily see how we would have paid a big price if it were a more robust opponent.”

| | Technorati Links | to Del.icio.us